Perl NEARLY PERFECT SETS IN PRODUCTS OF GRAPHS

نویسندگان

  • Maria Kwaśnik
  • Monika Perl
چکیده

The study of nearly perfect sets in graphs was initiated in [2]. Let S ⊆ V (G). We say that S is a nearly perfect set (or is nearly perfect) in G if every vertex in V (G)−S is adjacent to at most one vertex in S. A nearly perfect set S in G is called maximal if for every vertex u ∈ V (G) − S, S ∪ {u} is not nearly perfect in G. The minimum cardinality of a maximal nearly perfect set is denoted by np(G). It is our purpose in this paper to determine maximal nearly perfect sets in two well-known products of two graphs, i.e. in the Cartesian product and in the strong product. Lastly, we give upper bounds of np(G1 ×G2) and np(G1 ⊗ G2), for some special graphs G1, G2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nearly perfect sets in graphs

In a graph G = (V; E), a set of vertices S is nearly perfect if every vertex in V ? S is adjacent to at most one vertex in S. Nearly perfect sets are closely related to 2-packings of graphs, strongly stable sets, dominating sets and eecient dominating sets. We say a nearly perfect set S is 1-minimal if for every vertex u in S, the set S ? fug is not nearly perfect. Similarly, a nearly perfect s...

متن کامل

Different-Distance Sets in a Graph

A set of vertices $S$ in a connected graph $G$ is a different-distance set if, for any vertex $w$ outside $S$, no two vertices in $S$ have the same distance to $w$.The lower and upper different-distance number of a graph are the order of a smallest, respectively largest, maximal different-distance set.We prove that a different-distance set induces either a special type of path or an independent...

متن کامل

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

Perfect $2$-colorings of the Platonic graphs

In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and  the icosahedral graph.

متن کامل

Total perfect codes‎, ‎OO-irredundant and total subdivision in graphs

‎Let $G=(V(G),E(G))$ be a graph‎, ‎$gamma_t(G)$. Let $ooir(G)$ be the total domination and OO-irredundance number of $G$‎, ‎respectively‎. ‎A total dominating set $S$ of $G$ is called a $textit{total perfect code}$ if every vertex in $V(G)$ is adjacent to exactly one vertex of $S$‎. ‎In this paper‎, ‎we show that if $G$ has a total perfect code‎, ‎then $gamma_t(G)=ooir(G)$‎. ‎As a consequence, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004